小结:很多点获得突破和应用后,事实上就为真的通用智能做了充足的准备。想象下,我们的电力、医疗、教育都非常依赖于数据和垂直的智能,那只要AI的技术真的有突破,那么,一种超级智能来接管这一切就会变得非常容易。到那个点上,社会结构、经济形态就会产生根本性变化。当然这是另一个非常宏大的话题,真感兴趣的话,可以看我的新书《终极复制:人工智能将如何推动社会巨变》(硬广,汗...)。 |
A.I.创业上的启示:跳出来看的话,我们可以发现DeepMind的两个尝试具有这样的特征: 1.垂直的领域,但机器学习可以促成质的飞跃; 2.垂直领域牵涉的商业价值足够大; 3.能够比较容易的获取有效数据。 我们有理由相信这会是未来人工智能落地的普遍模式。现在的人工智能具有通用性,但远不是通用智能,并不能够什么都干。 这样一来从投入产出比的角度看,它就只有落地在那些显然能产出较大回报点上,这样才能真的获得应用。一个点获得应用后,那再展开到类似的领域,比如DeepMind从数据中心展开到发电厂,这样就可以形成“技术进步-投资-回报”上的正反馈。这很像新一代的单点突破,横向展开,所不同的是同一时间可以做的点实际上也还受制于是否能获得数据。 反过来讲这也意味着号称能做通用智能的基本上是骗子和疯子。声智科技(一家提供声学、语音方案的创业公司)的CEO陈孝良对此有非常清醒的认识,他的一个核心观点正是:智能不是越通用越好,数据也不是越多越好,认知技术能力边界非常关键。 上面所提到的基本模式未来很可能成为人工智能+的基本模式。有意思的事情是,这种落地并不只是DeepMind公司才能做,而是普遍存在于各个行业之中。 我们可以把能够做神经网络的团队分成两类:一类是真的能对模型本身有所改进,对社区做出根本性贡献的团队;一类是能够用好模型,把它落地的很好的团队。前者无疑是非常稀缺的,并且也只有极大的、有野心的公司才养得起,后者则门槛相对较低,与此同时应用范围则极广,极端点可以认为可以应用到所有匹配上述模式的地方,也正因此这里才蕴含了比较多的创业机会。 这里必须一提的是,真创业的话,DeepMind这个公司本身并不是一个很好的模仿对象,这公司实际成功的方法是:先屯一批很牛的人,不管落地方向,做些很牛的事情。等到抱上Google的大腿,再考虑怎么落地。这方法正常创业公司完全学不来,上面主要想强调的是它落地的方法值得学习,而非公司自身的创业思路。 |